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Introduction and Background

• The Importance of Mapping Fire
• Scales of Fire Research

– Global
– Regional

• Fire Severity
– A measure of burn effects, based on conditions and 

ecological impacts following fire
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Frequency of Sensor Use in Fire 
Severity Mapping Studies
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Problems Encountered in 
Previous Studies

• Topographic effect
– Spectral variability caused by illumination differences

• Mixed pixels
– Sensor IFOV can contain a variety of fire severity 

classes
• Classification criteria 

– Fire severity classes can be unrealistic



Research Objectives

• Examine the ability of SSpectral MMixture 
AAnalysis (SMASMA) to map five classes of fire 
severity in two diverse study areas

• Compare the decision tree classification 
accuracy of the SMA approach- within, and 
between study areas
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Data

• June 2000 LANDSAT ETM image (p40/r37)
– Converted to reflectance values

• Spectral library (Roberts et al., 1999)

• In situ field data (collected May-June 2000)



Classes of Burn Severity
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Methods
• Endmember selection

– GV, BV, Shade, Soil
• Spectral unmixing

– Evaluation based on RMS
• Shade Normalization

– Normalized GV, BV, Soil
• Decision tree training
• Map accuracy assessment
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Results- La Jolla Fire 

Overall Accuracy = 85 %
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Results- Laguna Fire

Overall Accuracy = 77 %
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Results- Comparison Between 
La Jolla and Laguna Fires 

Kappa Accuracy
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Summary Conclusions
• A decision tree classification approach resulted 

in high fire severity classification accuracy, 
based on normalized SMA fraction images 

• Accuracy comparison between classes 
• Accuracy comparison between study areas
• Future use and limitations of this approach


